Numerical study of liquid metal flow in a rectangular duct under the influence of a heterogenous magnetic field

نویسندگان

  • Evgeny V. Votyakov
  • Egbert A. Zienicke
چکیده

We simulated numerically the laminar flow in the geometry and the magnetic field of the experimental channel used in [Andreev, Kolesnikov, and Thess (2006)]. This provides detailed information about the electric potential distribution for the laminar regime (numerical simulation) and in the turbulent regime as well (experiment). As follows from comparison of simulated and experimental results, the flow under the magnet is determined by the interaction parameter N = Ha2/Re representing the ratio between magnetic force, determined by the Hartmann number Ha, and inertial force, determined by the Reynolds number Re. We compared two variants: (i) (Re,N)=(2000,18.6) (experiment), (400,20.25) (simulation), and (ii) (Re,N) =(4000,9.3) (experiment), (400,9) (simulation) and found an excellent agreement for the numerical and experimental distributions of the electric potential. This is true despite of the fact that the experimental inflow is turbulent while that in the simulation is laminar. As a special feature of the electric potential distribution local extrema under the magnets are observed, as well experimentally as numerically. They are shown to vanish, if the interaction parameter falls below a critical value. Another interesting new detail found in our numerical calculations is the appearance of helical paths of the electric current. Using a simplified magnetic field without span-wise dependence, we show that important physical features of the considered problem are sensitive to small variations in the spatial structure of the magnetic field: the local extrema of the electric potential and also the helical current paths disappear when the simplified magnetic field is used. The structure of the three dimensional velocity field is also investigated, in particular, a swirling flow is found in the corners of the duct caused by Hartmann layer destruction behind the magnets. keyword: 3D Numerical simulation, laminar liquid 1 Institut für Physik, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau, Germany metal flow in a rectangular duct, localized heterogenous magnetic field

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field

In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...

متن کامل

Numerical Simulation of Blood Flow Mixed with Magnetic Nanoparticles under the Influence of AC and DC Magnetic Field

Nanoparticles combined with magnetic fields are one of the most important research areas in the field of biomedical engineering. Direct Current (DC) magnetic and Alternative Current (AC) magnetic fields are often used for controlling nanoparticles. It is also used for hyperthermia treatment. The purpose of the current study is to investigate the effect of DC and AC magnetic field on nanoparticl...

متن کامل

Heat transfer in MHD square duct flow of nanofluid with discrete heat sources

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

متن کامل

Analysis of squeezing flow of viscous fluid under the influence of slip and magnetic field: comparative studies of different approximate analytical methods

The various industrial and engineering applications of flow of fluid between parallel plates have continued to generate renewed interests. In this work, a comparative study of approximate analytical methods is carried out using differential transformation,homotopy perturbation, Adomian decomposition, variation of parameter and variational iteration methods for the analysis of a steady two-dimen...

متن کامل

Numerical Study of Liquid Metal MHD Flow through a Square Duct under the Action of Strong Transverse Magnetic Field

Numerical solution for steady MHD flow of liquid metal through a square duct under the action of strong transverse magnetic field has been investigated. The walls of the duct are considered to be electrically insulated as well as isothermal. The numerical solutions for velocity and temperature distributions have been obtained by finite difference method. The solutions for different values of Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008